首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14397篇
  免费   103篇
  国内免费   158篇
安全科学   342篇
废物处理   596篇
环保管理   1564篇
综合类   3250篇
基础理论   3353篇
环境理论   6篇
污染及防治   3594篇
评价与监测   1113篇
社会与环境   770篇
灾害及防治   70篇
  2022年   129篇
  2021年   116篇
  2019年   107篇
  2018年   198篇
  2017年   205篇
  2016年   311篇
  2015年   233篇
  2014年   403篇
  2013年   1033篇
  2012年   449篇
  2011年   590篇
  2010年   470篇
  2009年   527篇
  2008年   569篇
  2007年   577篇
  2006年   537篇
  2005年   494篇
  2004年   451篇
  2003年   454篇
  2002年   431篇
  2001年   595篇
  2000年   370篇
  1999年   256篇
  1998年   147篇
  1997年   164篇
  1996年   171篇
  1995年   188篇
  1994年   179篇
  1993年   130篇
  1992年   164篇
  1991年   172篇
  1990年   168篇
  1989年   141篇
  1988年   156篇
  1987年   96篇
  1986年   128篇
  1985年   127篇
  1984年   122篇
  1983年   115篇
  1982年   120篇
  1981年   120篇
  1980年   87篇
  1979年   99篇
  1978年   101篇
  1976年   92篇
  1974年   104篇
  1972年   87篇
  1971年   85篇
  1967年   100篇
  1964年   92篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
81.
This paper reports the feasibility of using surface mount adhesives to produce low temperature microchannel arrays in a wide variety of metals. Sheet metal embossing and chemical etching processes have been used to produce sealing bosses that eliminate channel laminae, resulting in approximately 50% material savings over traditional methods. An assembly process using adhesive dispense and cure is outlined to produce leak-free devices. Optimal fill ratios were determined to be between 1.1 and 1.25. Bond strength investigation reveals robustness to surface conditions and a bond strength of 5.5–8.5 MPa using a 3X safety factor. Dimensional characterization reveals a two sigma (95%) post-bonded channel height tolerance under 10% after bonding. Patterning tolerance and surface roughness of the laminae faying surfaces were found to have a significant influence on the final post-bonded channel height. Leakage and burst pressure testing on several samples has established confidence that adhesive bonding can produce leak-free joints. Operating pressures up to 413 kPa have been satisfied, equating to tensile pressure on bond joints of 1.9 MPa. Higher operating pressures can be accommodated by increasing the bond area of devices.  相似文献   
82.
Soil organic carbon (SOC) and total nitrogen (N) stocks in an agroforestry system with water harvesting were analysed in a field experiment and the results compared with those of other crop management systems in the Mediterranean zone of central Chile. Agroforestry with water harvesting showed higher positive effects on N stocks, mainly in the upper soil layer, than the other crop management systems. However, soil analysis revealed a lack of differences between treatments, a fact that might be related mainly to the short study time (12 years) and the high spatial variability in these soil properties at the experimental site. In addition, the Introductory Carbon Balance Model that simulates N processes (ICBM/N) was evaluated for simulating trends in SOC and N stocks in the field experiment. Soil data collected between 1996 and 2008 in the field experiment and primarily literature data sets were used to test ICBM/N and its performance was evaluated by considering uncertainty in model inputs using Generalised Likelihood Uncertainty Estimation (GLUE) methodology. The GLUE estimates (5% and 95%) and measured SOC and N stocks were in satisfactory agreement. The observed SOC and N stocks were bracketed by the uncertainty bands in 70% and 80% of the simulations, respectively. Sensitivity analysis showed the model to be most sensitive to C parameters, such as the humification coefficient (h). The results of this study show that ICBM/N can be an effective tool for estimating SOC and N stocks from agroforestry combined with water harvesting systems in the Mediterranean zone of central Chile over the medium term. However, they also indicate that additional data sets are needed to redefine the parameter distributions in the model and thus to predict trends in SOC and N stocks in the future.  相似文献   
83.
Ash deposition impact on the energy performance of photovoltaic generators   总被引:1,自引:0,他引:1  
A little known side effect of the atmospheric air pollution is the degradation of photovoltaic (PV) cells’ performance due to the deposition of solid particles varying in composition, size and origin. In this context, an experimental-based investigation is conducted in order to compare the energy performance of two identical pairs of PV-panels; the first being clean and the second being artificially polluted with ash, i.e. a by-product of incomplete hydrocarbons’ combustion mainly originating from thermal power stations and vehicular exhausts. A series of systematic measurements of current intensity, voltage output and solar radiation are executed simultaneously for the clean and the polluted PV-panel, so that the effect of several mass depositions on the PVs’ power output, energy yield and conversion efficiency may be determined. According to the results, a considerable deterioration of the PV-panels’ performance is obtained, i.e. almost 30% energy reduction per hour or 1.5% efficiency decrease (in absolute terms) for ash accumulation on the panels’ surface reaching up to 0.4 mg/cm2.  相似文献   
84.
Changing the patterns of energy use requires investigating how energy consumers - not experts - conceive of energy challenges. This article explores the varying beliefs, attitudes, and views on energy security in the United States among experts and residents. Based primarily on an academic literature review to distill expert views, and a survey distributed to hundreds of residents in the U.S. to capture consumer views, the study begins by explaining its methodology before identifying seven suppositions related to energy security. These suppositions involve security of fuel supply, energy democracy, energy research and development, affordability of energy services, environmental pollution, and climate change adaptation and mitigation. The second section of the study tests these suppositions with a survey distributed to 427 respondents in the United States. Three suppositions are supported, two are unsupported, and two are neither supported nor unsupported. The final section of the study offers implications for U.S. energy policy and scholarship.  相似文献   
85.
We compared the efficacy of a natural biocide with four chemical tetrakishydroxymethyl phosphonium sulfonate, benzyl trimethyl ammonium chloride, and formaldehyde, glutaraldehyde, to control microbial induced corrosion in oil pipelines. The efficacy of biocides were monitored against Desulfovibrio vulgaris and Desulfovibrio gigas in experimental pipes by measuring cell counts, H2S production, Fe(II) production, production of extracellular polymeric substances and structure of biofilm. The treatment with cow urine had minimum planktonic cell counts of 3 102 CFU/mL as well as biofilm cell counts of 9 101 CFU/mL as compared with tetrakishydroxyl methyl phosphonium sulfonate, benzyl trimethyl ammonium chloride, formaldehyde and glutaraldehyde. Sulfide production was the lowest with cow urine (0.08 mmol/L), followed by tetrakishydroxymethyl phosphonium sulfonate 0.72 mmol/L. On day 90 of treatment, Fe(II) production was also found to be the lowest with cow urine. The scanning electron microscopic studies indicated that the biofilm bacteria were killed by cow urine. These results demonstrate the cow urine mediated control of microbially induced corrosion, and this is indicative of its potential as a viable substitute of toxic biocides. To the best of our knowledge, this seems to be the first report which screens possible biocidal activity by cow urine as compared to the most common biocides which oil industry is currently using.  相似文献   
86.
Reef-building corals are an example of plastic photosynthetic organisms that occupy environments of high spatiotemporal variations in incident irradiance. Many phototrophs use a range of photoacclimatory mechanisms to optimize light levels reaching the photosynthetic units within the cells. In this study, we set out to determine whether phenotypic plasticity in branching corals across light habitats optimizes potential light utilization and photosynthesis. In order to do this, we mapped incident light levels across coral surfaces in branching corals and measured the photosynthetic capacity across various within-colony surfaces. Based on the field data and modelled frequency distribution of within-colony surface light levels, our results show that branching corals are substantially self-shaded at both 5 and 18 m, and the modal light level for the within-colony surface is 50 μmol photons m?2 s?1. Light profiles across different locations showed that the lowest attenuation at both depths was found on the inner surface of the outermost branches, while the most self-shading surface was on the bottom side of these branches. In contrast, vertically extended branches in the central part of the colony showed no differences between the sides of branches. The photosynthetic activity at these coral surfaces confirmed that the outermost branches had the greatest change in sun- and shade-adapted surfaces; the inner surfaces had a 50 % greater relative maximum electron transport rate compared to the outer side of the outermost branches. This was further confirmed by sensitivity analysis, showing that branch position was the most influential parameter in estimating whole-colony relative electron transport rate (rETR). As a whole, shallow colonies have double the photosynthetic capacity compared to deep colonies. In terms of phenotypic plasticity potentially optimizing photosynthetic capacity, we found that at 18 m, the present coral colony morphology increased the whole-colony rETR, while at 5 m, the colony morphology decreased potential light utilization and photosynthetic output. This result of potential energy acquisition being underutilized in shallow, highly lit waters due to the shallow type morphology present may represent a trade-off between optimizing light capture and reducing light damage, as this type morphology can perhaps decrease long-term costs of and effect of photoinhibition. This may be an important strategy as opposed to adopting a type morphology, which results in an overall higher energetic acquisition. Conversely, it could also be that maximizing light utilization and potential photosynthetic output is more important in low-light habitats for Acropora humilis.  相似文献   
87.
The natural microbial activity in the unsaturated soil is vital for protecting groundwater in areas where high loads of biodegradable contaminants are supplied to the surface, which usually is the case for airports using aircraft de-icing fluids (ADF) in the cold season. Horizontal and vertical distributions of microbial abundance were assessed along the western runway of Oslo Airport (Gardermoen, Norway) to monitor the effect of ADF dispersion with special reference to the component with the highest chemical oxygen demand (COD), propylene glycol (PG). Microbial abundance was evaluated by several biondicators: colony-forming units (CFU) of some physiological groups (aerobic and anaerobic heterotrophs and microscopic fungi), most probable numbers (MPN) of PG degraders, selected catabolic enzymatic activities (fluorescein diacetate (FDA) hydrolase, dehydrogenase, and β-glucosidase). High correlations were found between the enzymatic activities and microbial counts in vertical soil profiles. All microbial abundance indicators showed a steep drop in the first meter of soil depth. The vertical distribution of microbial abundance can be correlated by a decreasing exponential function of depth. The horizontal trend of microbial abundance (evaluated as total aerobic CFU, MPN of PG-degraders, and FDA hydrolase activity) assessed in the surface soil at an increasing distance from the runway is correlated negatively with the PG and COD loads, suggesting the relevance of other chemicals in the modulation of microbial growth. The possible role of potassium formate, component of runway de-icers, has been tested in the laboratory by using mixed cultures of Pseudomonas spp., obtained by enrichment with a selective PG medium from soil samples taken at the most contaminated area near the runway. The inhibitory effect of formate on the growth of PG degraders is proven by the reduction of biomass yield on PG in the presence of formate.  相似文献   
88.
Pot culture experiments were conducted in a glasshouse to evaluate the effects of four efficient Cr(VI)-reducing bacterial strains (SUCR44, SUCR140, SUCR186, and SUCR188) isolated from rhizospheric soil, and four arbuscular mycorrhizal fungi (AMF—Glomus mosseae, G. aggregatum, G. fasciculatum, and G. intraradices) alone or in combination, on Zea mays in artificially Cr(VI)-amended soil. Presence of a strain of Microbacterium sp. SUCR140 reduced the chromate toxicity resulting in improved growth and yields of plants compared to control. The bioavailability of Cr(VI) in soil and its uptake by the plant reduced significantly in SUCR140-treated plants; the effects of AMF, however, either alone or in presence of SUCR140 were not significant. On the other hand, presence of AMF significantly restricted the transport of chromium from root to the aerial parts of plants. The populations of AMF chlamydospores in soil and its root colonization improved in presence of SUCR140. This study demonstrates the usefulness of an efficient Cr(VI)-reducing bacterial strain SUCR140 in improving yields probably through reducing toxicity to plants by lowering bioavailability and uptake of Cr(VI) and improving nutrient availability through increased mycorrhizal colonization which also restricted the transport of chromium to the aerial parts.  相似文献   
89.
Animal feeding operations (AFOs) produce particulate matter (PM) and gaseous pollutants. Investigation of the chemical composition of PM2.5 inside and in the local vicinity of AFOs can help to understand the impact of the AFO emissions on ambient secondary PM formation. This study was conducted on a commercial egg production farm in North Carolina. Samples of PM2.5 were collected from five stations, with one located in an egg production house and the other four located in the vicinity of the farm along four wind directions. The major ions of NH4+, Na+, K+, SO42?, Cl?, and NO3? were analyzed using ion chromatography (IC). In the house, the mostly abundant ions were SO42?, Cl?, and K+. At ambient stations, SO42?, and NH4+ were the two most abundant ions. In the house, NH4+, SO42?, and NO3? accounted for only 10% of the PM2.5 mass; at ambient locations, NH4+, SO42?, and NO3? accounted for 36–41% of the PM2.5 mass. In the house, NH4+ had small seasonal variations indicating that gas-phase NH3 was not the only major force driving its gas–particle partitioning. At the ambient stations, NH4+ had the highest concentrations in summer. In the house, K+, Na+, and Cl? were highly correlated with each other. In ambient locations, SO42? and NH4+ had a strong correlation, whereas in the house, SO42? and NH4+ had a very weak correlation. Ambient temperature and solar radiation were positively correlated with NH4+ and SO42?. This study suggests that secondary PM formation inside the animal house was not an important source of PM2.5. In the vicinity, NH3 emissions had greater impact on PM2.5 formation.
ImplicationsThe chemical composition of PM2.5 inside and in the local vicinity of AFOs showed the impact of the AFO emissions on ambient secondary PM2.5 formation, and the fate and transport of air pollutants associated with AFOs. The results may help to manage in-house animal facility air quality, and to develop regional air quality control strategies and policies, especially in animal agriculture-concentrated areas.  相似文献   
90.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号